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PREFACE

This report represents the first chapter of a book in preparation

on inference and data analysis in reliability and life testing. The

point of view adopted differs from that of most books on the subject

in the following basic respect: Prior information available to the

reliability analyst is utilized fully in a formal statistical fashion.

Experience accumulated in helping engineers, quality assurance managers,

scientists, biostatisticians, and others who must make estimates and

reach decisions from either planned experiments or retrospective data

has shown us that the point of view adopted throughout the book has

resulted in useful solutions to real-life problems. By contrast, more

classical statistical methods have often proven inadequate in many prac-

tical problems simply because the data available are insufficient to reach

conclusions with a desired degree of assurance.

The book is intended primarily for actual use by the engineering

and scientific practitioner, rather than for theoretical study and

philosophical analysis by the statistician. Thus we omit a philosophical

justification of the methods presented; rather, we rely on the fact that

they have led to useful answers to problems that have arisen in practice.

One final point: Many of the methods and results are original and

have not appeared in the literature. This fact has led us to issue the

chapters as reports under our research grants. & ac.ionF'or
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ABSTRACT

This paper constitutes Chapter 1 of a book on "Inference and
Data Analysis for Reliability and Life Testing." The purpose
is to provide an elementary coherent Bayesian foundation for
research in statistical reliabi.lity theory. The results in
Section 3 and the Appendix concerning the role of failures
and total time on test in statistical inference for the expo-
nential model is new.
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INFERENCE FOR THE EXPONENTIAL LIFE DISTRIBUTION

by

Richard E. Barlow and Frank Proschan

Our objective is to develop methodology for analyzing life test

data. Initially, we have only data--no mathematical models. Through

an exploratory data analysis (see Chapter 3) or an analysis based on

the physical processes generating the data, we may select an exponen-

tial life distribution model as appropriate for the analysis of the

data. Of course, this may be at best only an approximation to the

"true" underlying life distribution. With this reservation in mind,

we suppose the life distribution F is exponential; specifically:

(0.1) F(x I X) 1 - e -  x > 0 , X > 0

where X is the unknown constant failure rate. The vertical bar

in F(x I X) indicates that we are conditioning on the parameter X

i.e., for specified X the distribution is exponential with failure

rate X The corresponding density is:

(0.2) f(x X) Xe- x > 0 X > 0
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1. BASIC CONCEPTS

To begin with, we suppose the life test data consist of observed

complete lifetimes x,,x2, ..., xn on n units. For example,

Table 1.1 lists ordered lifelengths of 100 Kevlar 49/Epox strands

subjected to a high static load (Barlow, Toland and Freenian (1979)).

An exploratory data analysis indicates that an exponential life dis-

tribution may be appropriate for analyzing these lifelengths. Thus, we

assume that the observations constitute a sample of n independent,

identically distributed random variables with distribution F given

by (0.1). Although we assume a fixed A exists which specifies F

we are uncertain as to the true value of A , and seek a method which

uses the data to express probabilistically our uncertainty regarding

the true value of A.

The first step is to evaluate the joint probability density of

the random lifetimes X1 , ..., Xn evaluated at the observed values

xI 9 ..., xn . Since we are assuming that X1 , ..., X are indepen-n n

dent given A , the joint density of the observed values is:

n n
(1.1) i f(xi A) X n exp -A xiJ
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TABLE 1.1

TIMES TO FAILURE OF STRANDS SUBJECTED
TO STRESS AT 80% OF MEAN RUPTURE STRENGTH

Rank Hours Rank Hours Rank Hours Rank Hours

1 1.8 26 84.2 51 152.2 76 285.9

2 3.1 27 87.1 52 152.8 77 292.6

3 4.2 28 87.3 53 157.7 78 295.1

4 6.0 29 93.2 54 160.0 79 301.1

5 7.5 30 103.4 55 163.6 80 304.3

6 8.2 31 104.6 56 166.9 81 316.8

7 8.5 32 105.5 57 170.5 82 329.8

8 10.3 33 108.8 58 174.9 83 334.1

9 10.6 34 112.6 59 177.7 84 346.2

10 24.2 35 116.8 60 179.2 85 351.2

11 29.6 36 118.0 61 183.6 86 353.3

12 31.7 37 122.3 62 183.8 87 369.3

13 41.9 38 123.5 63 194.3 88 372.3

14 44.1 39 124.4 64 195.1 89 381.3

15 49.5 40 125.4 65 195.3 90 393.5

16 50.1 41 129.5 66 202.6 91 451.3

17 59.7 42 130.4 67 220.2 92 461.5

18 61.7 43 131.6 68 221.3 93 574.2

19 64.4 44 132.8 69 227.2 94 653.3

20 69.7 45 133.8 70 251.0 95 663.0

21 70.0 46 137.0 71 266.5 96 669.8

22 77.8 47 140.2 72 267.9 97 739.7

23 80.5 48 140.9 73 269.2 98 759.6

24 82.3 49 148.5 74 270.4 99 894.7

25 83.5 50 149.2 75 272.5 100 974.9
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The Likelihood Function

To focus attention on the parameter of interest A , we regard

(1.1) as a function of A and call

(1.2) L(A I Xl, ..., x ) = An ep I x xt

the likelihood function. (The likelihood, although a function of the

parameter X , is not a probability density in the parameter. Hence

the vertical bar in L does not signify a conditional probability,

as it usually does.) The likelihood function provides a means of

quantifying the information contained in the data concerning the

unknown true value of the exponential parameter A

Suppose a unique value X of A exists maximizing the likelihood

function; then we call A the mode of L(A I xI , ... , xn ) and the

maximum Likelihood estimator (MLE) of A . In general, the MLE, when

it exists, is a very useful concept.

To simplify the calculation of A , we use the fact that the

maximum of the likelihood, when it exists, is achieved at the same value

of A as is the maximum of the logarithm of the likelihood. Thus we

compute

n
d ln L(X I x1,  .

I
-dA n...,x) A xi ,i-i

and set the derivative equal to 0 . We readily obtain

S n x ,

X=nill)

and verify that maximizes L(X x, .'-, xn) for fixed xl, .. , xn

.'
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The MLE A may be a very satisfactory estimator of the unknown

failure rate X for moderate to large sample sizes n . (Caution:

For more complex life distribution models involving an infinite number

of unknown parameters, the MLE of the parameters may be quite mislead-

ing. See Marshall and Proschan (in process) for an example in which

the MLE converges to the wVrng set of the parameter values even though

the sai'ple size tends to infinity. Also see Lindley (1972), p. 12, for a

similar two parameter example and Basu (1975), p. 34, for a one para-

meter example.) In the present case of estimation of the single para-

meter X of the exponential, our uncertainty as to the true value of

X stems from the fact that our sample size n is finite.

A good v'a co express our uncertainty concerning X is by means

of a probabiZity distr-ibution for X . To display explicitly this point

of view, we let X denote a random variable expressing our uncertainty

concerning the unknown true value of X

Bayes' Theorem

A key theorem based on this point of view is the fundamental Bayes'

Theorem. It provides a method for computing the probability density of

the random variable expressing our uncertainty concerning the parameter

conditioned on the observed data.

1.2 Theorem (Bayes' Theorem)

Let (a) X and e be random variables with joint probability

density p(x,e) , (b) p(x I 8) and p(e I x) denote the correspond-

ing conditional densities, and (c) w(8) denotes the marginal density

of 8 . Let be the parameter space, i.e., 8 c 0. Then
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(1.3) p (0 1 ) ,ip (
f p(x e)7r(O)de

0

Proof:

The joint density p(x,e) of X and e may be written as:

p(x,e) - p(x I OGr(e) .

By definition of a conditional probability density,

p(e I x) - p(x,O)/p(x)

when p(x) > 0 , where

p(x) df fp(x I )(O)dO

By combining the three equalities in the steps just above, we immed-

iately obtain the desired conclusion (1.3).I1

Prior and Posterior Distributions

Before analyzing statistical data, it is helpful and efficient

to assess relevant information. A convenient way to accomplish this

is to formulate a probability density on the parameter(s) of the

model selected. We realize that generally we cannot be certain that

the model selected is the "true" model and that the prior distribution

for the parameter(s) specified for the model is perfectly correct.

However, once we select an appropriate model, and a prior distribution

on the parameter space for that model, we may complete a useful and

informative data analysis in an unambiguous fashion using only the

standard calculus of probability theory.
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The Prior Density

First, we confine our choice of prior densities to proper

densities; i.e., w(X) satisfies

W

fw(X)dX - 1

0

Next, to motivate the concept of a natural conjugate prior for

X , we suppose that in the particular problem under discussion, we

have very little prior information concerning A. It seems natural

to assume initially a rectangular prior density:

7r (for 0 < <M

° (0 otherwise ,

where M is a very large number (say M - 101) . Under this assump-

tion on the prior density, we assign the sane probability that X is

in any interval in (0,H] of a specified length. For example, the

a priori probability that 5 < X < 10 is the same as the a priori

probability that 19 < X < 24

The Posterior Density

Suppose we have observed a sample of n lifelengths xI, ..., xn

having joint density p(x , ... , x ) . By Bayes' Theorem, the

posterior density of X is given by:

ir l(X xl, .' xn) p(x1, . n ] X)ir 0 (A p(x1 , ... xn X)r0(X)dX
0 (J
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Recall that the ZikeZlihood L( I x1 , '.., xn) - P(X1, ..., x )

namely the probability density of the observed outcome considered as a

function of the parameter X . Thus we may write:

?r 1 (X I xis ... ,1 x n)  L(X I xl , ... , xn)ir 0o(X)/OL(X I xI , ... , n)io(A)d.

Since X has been integrated out in the denominator, the denominator is

now a constant with respect to X . Hence

ir (( I x, --. , xn ) - L(X I xI , ... , x)ir)o(X)

where - means "proportional to." Thus the right hand side is the same

as the left hand side up to a constant which does not depend on the para-

meter X . Notice that since the data xI , ..., xn  have already been

observed, the data are not considered variables at this stage of the

analysis.

Assuming the rectangular prior Vr (X) - M for 0 < X < M , we

obtain for the posterior density of X

Mnn 1- n n

71(;I xI, ... , X) - exp ( x A exp (X . x dX

For n x > , this is approximately:
1

(1.4) ilr1 x1 ..."', Xn ), :( Xl) ln exp -X x (n+i
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where r(n + 1) - f une-Udu is the gamma function. In computing (1.4)0 n+lunec u
we have used the fact that f c 1u eCdu - r(n + 1) for all c > 0.

0
Thus, if we assume initially a rectangular prior on [0,M] , M large,

the resulting posterior density is approximately of the form:

(1.5) b a A a-l e-b /r(a) for X > 0 ,

where a , b > 0 . Note that the posterior density is approximately a

gamma density with shape parameter a - n + 1 and scale parameter

nb I x xi •
i=i

Now, suppose we obtain an additional independent random sample of

lifelengths yI'y2 ' "'. YM . Then it is reasonable to use as our new

prior density, the posterior density (1.4) obtained from the previous

sample. Using as our new prior:

il(X) - baa-1e-b /r(a)

n
with a - n + 1 and b i xi , we obtain:

1

Xexp -X m y)bX a-le -X/r(a)

Xm exp X y baXa-le-b'/r(a)d

0

or

W 2( ' ' Ym)

(1.6)

U(b + m y)m+am4a-l exp (XA(b irm + a)
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Thus, a is increased by the additional number m of observed failures
m

and b increased by the additional total time on test Yi to obtain
1

the new posterior density w 2 ; note however, that the form of the pos-

terior density, the gamma, is retained.

Because of this preservation property (the gamma prior used in the

exponential model leads to a gamma posterior), the gamma prior is called

the "natural conjugate" prior for the parameter A in the exponential

model. More generally, a conjugate prior distribution is "conjugate"

with respect to a given statistical model if the form of the posterior

is the same as that of the prior; the parameters of the posterior dis-

tribution will of course, change in accordance with the data observed.

In the present case, we can interpret the prior density parameter a - 1

(if a is an integer > 1) as the number of observations in a previous

experiment (actual or conceptual) and b as the corresponding total

time on test.

In the present exponential model, the gamma prior for X is mathe-

matically convenient and has intuitive interpretation. However, the

analyst is not confined to a choice with this family. Rather, the

choice of the prior distribution should always reflect thd best possible

specification of the analyst's prior information concerning the unknown

parameter. Thus, in reporting the results of the data analysis, the

analyst should present his specification of the prior and the basis for

his choice. In Chapter 3, we will discuss in more detail the assignment

of the prior distribution.

1.3 Example

Table 1.1 lists the observed lifetimes of 100 orgainic fiber strands

subjected to a static load of 8009 grams which corresponds to 80% of

their mean rupture strength. Experience has shown that the lifetime
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of an organic fiber strand at relatively high stress can be reasonably

well fitted by an exponential life distribution. Thus, we assume

-Ax
P[Lifelength > xj - e for x > 0

where A is unknown. As described above, we calculated the MLE of X

as:

= 4.78 x 10 3 /hour

Since the sample size of 100 is moderately large, the likelihood

• 100 ( 100 \
L(A I xI , ... , xO O ) 10 exp -X 1 x

1

will override in importance the retangular prior:

i (A) -M - 1 , 0 < X< M,

when M >> A . From the prior no we calculate the posterior density

of A to be approximately a gama with parameters a - 101 and b - 20,917

hours. (Note that a is dimensionless while b is measured in hours).

See Figure 1.1. The mode of the posterior density may be used to esti-

mate A . In Chapter 2 we discuss other estimators.

Sufficient Statistics

By a statitico, we mean a function (possibly vector-valued) of the

data. A statistic, of course, is often used to estimate an unknown

parameter of interest. Clearly, the complete set of data observed is

trivially a statistic. For a large set of data, working with aZl of the

observations may be tedious or even unmanageable. Thus, we are motivated

to find a statistic of smaller dimensionality like the sample mean (of

- - - -~ - . . . . . . . .
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dimension one) or the number of failures and the total time on test (of

dimension two), but which contains all of the information in the sample

concerning the parameter. Preferably, we would like to estimate the para-

meter using a statistic of lower dimensionality which summarizes all of the

information in the sample. We will often use D to denote the observed

data. For example, D could stand for the vector of observed values

(Xlx 2, ..., xn) . Later it will denote more complicated data sets.

This motivates:

1.4 Definition

Let D denote the data with probability density p(D 1 6) indexed

by the parameter e A statistic s is sufficient for 6 if and only

if for every prior w(e) , the posterior

w(e[ D) -p(D I 6)n(e)/ fp(D I e)(e)de
H

depends on the data D only through the statistic s ; i.e., for every

prior w , the posterior can be written as w(6 I s)

Intuitively, knowing s we are as informed about the parameter 6

as when we know all the data collected.

There may be several sufficient statistics available for estimating

a parameter. Clearly, from among these we would prefer to make use of

one of lowest dimensionality. For a given parameter, there actually may

be more than one sufficient statistic of lowest dimensionality and it may

be vector valued.

An easy way to find a sufficienct statistic is to examine the likeli-

hood for the kind of factorization displayed in:
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1.5 Lemma

Let the likelihood L(e I D) factor so that:

L(O I D) g(s I e)h(D) ,

where h does not depend on 6 . Then s is a sufficient statistic

for e

Proof:

For an arbitrary prior density w , the corresponding posterior

density is given by:

w (e I D) - L(e D)j(e/ L(8 I D)7r(e)de

- g(s O)h(D)(8 g(s I 6)h(D)ir(e)de

The last expression clearly depends on D only through the statistic

s . Thus by Definition 1.4, s is sufficient for e . I
For example, if x1 , ..., xn  are independent lifelengths in the

n e
exponential model, given X , then s df x is a sufficient statistic

1'1

for the failure rate X since:

x , . n) exp X xi ) n e-Xs.

- top
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The Sample Space

The s=ple space is the space or set of possible sample outcomes.

If we observe the lifetimes of n units, the sample space is

(1.7) S a {(X1 ,x 2, ... , x) x i >-O , 1 < i <

For n - 2 , S is the positive quadrant; i.e.,

1 2

S

0 x

FIGURE 1.2

However, we may just as well consider another sample space. Suppose

we are told only the ordered lifetimes

x(1) <-x(2) -- - _x (n ) ,

i.e., we no longer know which unit fails at time x (l) , 1 < i < n . The

sample space corresponding to the ordered lifetimes is now

(1.8) So {(x(1) "x(2), ... , X(n)) I 0 < x(1) _ . X (n)1.
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For n 2 , we now have

X (2 ) S0

0 X (1)

FIGURE 1.3

For sample space (1.7) and the exponential model we have the joint

probability density

(1.9) p(X1 Vx 2 ' ... x n A

0o otherwise.

For this case L(A Ix 1 ,x 2, ... ,P xn) - p(xl1 x 2 P . .. c n A

On the other hand, for sample space (1.7) and the exponential model

we have

(1.10) PO(x (1 )' ... , c(n) IA)

4;1 A nexp [X x M1 0 < x ( .) -1 -< n
0 otherwise
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The factor n! in (1.10) follows from the fact that the ordered observa-

tions can result from any one of n! permutations of the observations

XlX2P ..., .xn  For this case let

L0 (A (1), ... , x(n)) - Po(x(1)' ., x(n)

From (1.9) and (1.10) we see that

(1.11) L(X I xll2, ..., x) L0(A X (1)'x( 2). *** x(n))

It follows that, for any prior for A , the posterior density for A will

be the same no matter which of the above sample spaces we choose. From

(1.11) and Le--a 1.5 we see that the order statistics x(1)x( 2) ... , X(n)

are sufficient for X

U .4
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2. SELECTED LIFE TEST SAMPLING PLANS

In this section we illustrate the application of the concepts

and methods of Section 1 when estimating under each of several commonly

used life test sampling plans.

Sampling Plan (a). Complete Observation Until A Specified Number of
Failures Have Occurred

A popular plan consists of putting n items on test and observing

the failure times of the first k failures, where k is specified in

advance. The motivation for following this plan is to save time in

determining an estimate of the exponential failure rate.

Let

X(1) _ (2)  (k) , < k< n

denote the successive times of failure of the earliest k failures;

X (l , . x(k)  are called the first k order statistics in a sample

of size n . The likelihood of this observed outcome under the expo-

nential model is given by;

n! [ k -Xx(i]M -(n-k)Xx(k)L(X I D) - ! i!( - W) il Xe e
... islI

(We follow the usual convention that 0! - 1 .)

Simplifying, we have:

(2.1) L(A I D) - ( k exp _X x + (n - k)x ]

To verify the expression preceding (2.1), note that the combinatorial
a!

coefficient 1! ... l!(n - k)! represents the number of ways of choosing

1! .. 1.( k);: .. ,
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one observation to correspond to each of x(1 ) ,x(2 ), ... , x(k) and

(n - k) observations for the (n - k) unobserved failure times, from

among the n failure times (of which only the first k are actually

observed). The product factor represents the joint density of the k

actually observed failure times, given A . Finally, the last factor

represents the probability that (n - k) lifelengths each exceed X(k)

given X .

The expression in the exponent of (2.1):

k
x(i) +(n k)(k) nx(l) + (n - l)(x(2) - x(l))

(2.2)
+ ... + (n - k + l)(x(k) - x(kl)) def T(X(k) )

represents the total time on test until the kt h failure. Note that it

is comprised of nx (1) the total time on test observed until the first

failure; of (n - l)(x(2) - x(l)) , the total time on test observed between

the first and second failures; ... ; and of (n - k + l)(x(k) - X(k-l))

the total time on test observed between the penultimate and the last

observed failures. (Of course, it is understood that after an item fails,

it is no longer under observation.)

The total time on test statistic turns out to be a very important and

useful statistic not only in the exponential model, but also after appro-

priate generalization, in a large number of other models involving incomplete

data. In the exponential model, the total time on test and the number of

observed failures constitute a sufficient statistic for A In the pre-

sently considered sampling plan under which k , the number of observed

failures is specified in advance, we see from (2.1) that T(xk) alone is

sufficient for A

Suppose we assume a gamma prior on X
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ir(A) - baa-l e-b r(a)

Using (2.1), we obtain for the posterior:

(2.3) w(X I D) - [b + T(x(k))]k+aXk+a-le -'[b+T(x(k))] /r(k + a)

also a gamma, but 4ith the shape parameter a of the prior density replaced

by a + k and the scale parameter b of the prior density replaced by

b + T(x(k)) . Note that the increment in the scale parameter is T(x(k))

the observed total time on test. The mode of the posterior density is:

A0 - (k + a - l)/[b + T(x(k))]

It is interesting to note that for w(A) E c , the mode of the posterior is

exactly the well known 14LE:

A k/T(x(k))

However, it should be emphasized that this prior is improper in the sense

that f (X)dA .
0

We would expect that after collecting a set of data from the expo-

nential distribution, we would have more information concerning the unknown

parameter X than before; more precisely, the peakedness of the density

of A might increase or the coefficient of variation might decrease. The

coefficient of variation of a distribution is the ratio of the standard

deviation (assumed finite) to the absolute value of the mean (assumed non-

zero). In the case of the gamma prior density, the mean is a/b , the

2 -variance is a/b , and so the corresponding coefficient of variation is a

Under the present sampling plan, the posterior distribution, given in

(2.3), is also a gamma distribution, but with the shape parameter

-7
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(the updated "a" value) now a + k It follows that the coefficient

of variation is now reduced to (a + k)-1/2 Thus for fixed a , the

coefficient of variation decreases roughly as k 1 /2 , where k denotes

the observed number of failures. ThIs simple calculation gives us a

quantitative notion as to our relative uncertainty concerning X both

before and after observation, and therefore concerning the decrease in

our uncertainty.

Sampling Plan (b). Observation Terminated at Fixed Time (Truncated
Sampling)

Suppose n units are put on life test at time t - 0 and each is

observed until failure or fixed time to *whichever occurs first. Given

the random outcome K - k (0 4 k < n) observed failures in [O,t ,

the corresponding likelihood is given by:

n! [k _Xx iM1-)(nk)t0(2.4) L(A I D) - n l!(n - k)e1 .... i-I

where the product in square brackets is defined as 1 for k - 0 . The

verification of the likelihood expression (2.4) is similar to that ob-

tained under the previous sampling plan, leading to the expression pre-

ceding (2.1). One key difference is that the number n - k surviving

fixed time t under the present plan is random, while the number n - k0

surviving past the kth failure under the earlier plan is specified in

advance.

We may rewrite the likelihood L(X I D) as:

. n! k ek -[!x1) n ~o I

(2.5) L(A ID)n (n -k) kk)t

(ne.x4 k)! No oil
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It is clear from (2.5) and Lemma 1.5 that the pair k and the total

time on test:

k
T(to ) - xM + (n - k)t

are sufficient statistics for A . Under the present sampling plan,

both k and the T(t ) are observed, and thus together constitute the

data D .

From (2.5) the MLE is computed as:

- k/T(t 0)

Under the present sampling plan it is possible to observe k - 0 failures,

leading to a MLE of 0 . Such an estimate is intuitively unsatisfactory;

in this situation an analysis based on the posterior distribution of X

is preferable.

The posterior density resulting from a gamma prior [see (1.4)] is,

using (2.5):

T~t)]ka~ka-l-X[b+T(to)]

(2.6) n(X I D) - Eb + T(t0)]k+axk+ale - /r(k + a)

Just as in the previous sampling plan, the posterior coefficient of
-1/2 -1/2

variation is (a + k) , which is smaller than a , the prior

coefficient of variation.

Sampling Plan (c). Inverse Binomial Sampling

A unit is put on tezt until it fails or reaches a specified age

t , whichever occurs first. At this time, the unit is replaced by a

new unit. This procedure is repeated sequentially until k (specified

Y
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in advance) failures are actually observed. The number N of units

that have to be tested until k failures are actually observed is, of

course, a random variable. For example, we may have only one test

chamber and we may be able to test at most one unit at a time.

Let Y - min (X,t ) , where X has exponential density Ae- x ,

x > 0 . Then conditional on Y < t and T , the density of Y is

given by:

e-XY/(I - e oAt) for 0 < y < t o

Thus, if the successive failure ages actually observed are denoted by

Y'Y22 ...'s Yk , the corresponding conditional joint density is given

by:

k k_
k Xy X exp ( xY)

g(Yy "''' X A , y, < to ' 1 < i < k) i (e

The probability that N - n units have to be tested in order to observe

k actual failures is given by

P[N - n I X] - n - eto)ke to(nk) for n > k

It follows that, given N - n and observed failure ages ylY 2 , ....I Yk

the corresponding likelihood is:

L(X I D) - (k 1)X exp X y) exp [-t 0 (n-k)] , y o . .... k

Combining exponentials we obtain:
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(2.7) L(A I D) k n lA exp {.A~yi + (n'- k)t]

0 < y < to i = 1, ... , k

From Lemma 1.5, we conclude that the totaZ time on test:

k
T y Y + (n - k)t0

i-i0

is by itseZf sufficient for X since k is fixed in advance.

From (2.7) we also obtain the posterior density for X based on a

gamma prior density as:

(2.8) n(X I D) - (b + T) k+ak+a- e-(b+T) /r(k + a)

Note the striking resemblance in the posterior density under the three

samplingplans so far considered! (Compare (2.8), (2.6'., and (2.3).)

Remarks:

In the three sampling plans considered so far, the number k of

observed failures and the total time on test T are all that we need

from the observations in order to complete our data analysis; the suffi-

ciency of k and T makes this true. Note that this fact holds for

any choice of a prior density.

The "stopping rule" in each of the three test plans considered

gives no information about the parameter A , i.e., is noninformative

about A . (As the name implies, the stopping ruZe is simply the rule

which specifies when the testing is to stop. For example, in the

sampling plan (a) we test until k failures are observed and then stop

further observation.) If the stopping rule were to give information
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about the parameter X , then the total time on test T and the observed

number of failures would not be sufficient for X

Finally, note that in the test plans considered thus far, the MLE

is the ratio of the number of observed failures to the total time on

test. This simple formula for the MLE holds in most of the testing pro-

cedures followed under the exponential model, as we see in this chapter

and shall see in Chapter 2.

A* - -,
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3. INFERENCE BASED ON MEAN LIFE

Thus far we have discussed inference for the exponential distri-

bution based on the failure rate X . For many analysts, the mean life

8 of the exponential distribution may seem to be the more appropriate

parameter to estimate. Note that either parameter determines the other

in the exponential model since:

6 uf x~eXXdx = X-l

0

Suppose we consider the simplest type of testing plan: n units

are put on test and observed until each fails. The corresponding mutually

independent lifelengths given X are xlx 2 , ..., xn 9 constituting a complete

sample from the exponential density:

f(xj e) = elx/e

The ZikeZihood of the outcome is given by:

(3.1) L(e n 1  *.x - exp e i

Clearly, the MLE of e is given by:

n- 1i

Suppose now we have very little prior information on the parameter

e . We therefore assume a rectanguZar prior density on :

71(s) M7I for 0 < e < M,
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t*~where M is large. The corresponding posterior den ity for 8 may

be computed approximately, by Bayes' Theorem (Theorem 1.2), as:

(3.2) r(e x . ), a ba8- (a+l) e-b/e/r(a)

n
for e , a , b > , where now a - a - 1 and b =xi.

1

The density of (3.2), denoted by wa,b(8) , is called the inverted gumna

density, since if e is a random variable with density fa,b(8) , then

81 M A has gamma density (1.5).

We may verify readily that if our inital prior is of the form

Wa ,b(8) , of (3.2) and we use any one of the sampling plans, then the

corresponding posterior density is also of the form (3.2). However,

the parameter a of the prior is replaced by a + k in the posterior,

and the parameter b of the prior is replaced by b + T in the post-

erior. As before, k denotes the number of observed failures and T

is the total time on test. This follows readily from the likelihood
n

expression (3.1) and the fact that in this case T = x, since all
1

lifelengths are observed.

The Mean of the Posterior Density

The mean of the inverted gamma density given in (3.2) is readily

It would be inconsistent mathematically to assume a rectangular prior

on both X and 8 a X , even though we have very little prior infor-
mation on both parameters. (The i mplications for e that result from
assuming a rectangular prior for X are brought out in Exercise 1.)
We assume a rectangular prior for 8 here to motivate the use of a natural
conjugate prior.

4#.. . -,.. .
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calculated:

f{ba-(a+l)e.b//r(a)Id - b/(a - 1)

0

For the inverted gamma posterior density in which the parameters are

a + k (in place of a ) and b + T (in place of b ), the corresponding

mean takes the form

b + T (1 - b T( 3 . 3 )~ + k - 1 -=  (+ - ) a - w  -; ,

where w - k/(k + a - 1) . Thus the mean of the posterior density may

be written as a convex combination of the prior mean b/(a - 1) and

the maximum Likelihood estimate T/k of the exponentiaZ Life di sPi-

bution mean. Note that as k , the number of observed failures increases,

the posterior mean attaches more weight to the MLE of the true mean and

less weight to the prior mean.

Table 3.1 summarizes the properties of the natural conjugate prior

density and of the corresponding posterior density for the two different

parametrizations of the exponential model.

I
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TABLE 3.1

COMPARISON OF ALTERNATIVE

PARAMETERIZATIONS OF THE EXPONENTIAL MODEL

Parameter Failure Rate, X Mean Life, e

Likelihood xke-AT 6-ke-T/e

Natural Con- b X e a-le-b (a) , bae-(a+l)e-b/r(a)
jugate Prior a,b > 0 (Gamma) a,b > 0 (Inverted Gamma)

Prior Mean a/b b/(a - 1)
a> 1

Prior Variance a/b2  b 2(a - 1) 2 (a - 2)]
a> 2

Prior Coefficient -1/2 (a - 2)-1/2

of Variation a > 2

Posterior Mean (a + k)/(b + T) (b + T)/(a + k - 1)
a > I

a +k (b +T) 2

Posterior Variance (b + T)2  (a + k - 2(a + k 2)
(b~~~~~ > (a2k i ( 2____ ___ ___ ___ ____ ___ ___ ___a>2

Posterior Coeffi- (a + k)-1/2 (a + k - 2) 1/2

cient of Variation a 2

Note: k - number of observed failures,

T - total time on test.

Vt

- - . - - - - -
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Arbitrary Prior Density

In our analysis up to now, we have focused mostly on the case in

which the prior density is the naturaZ conjugate prior. In this sub-

section, we expand our consideration to cases in which the prior is

not necessarily the natural conjugate prior. We obtain results similar

to those holding in the natural conjugate prior case.

Let v(6) be a prior density on a such that (8 I w(8) > 01 is

an interval on 10,-) . We show in Appendix A of this chapter that

(3.4) P[O > eo 0 k,T] f ir(e I k,T)d6

0

is decreasing in k > 0 for fixed T and increasing in T for fixed

k , i.e., the posterior random variable 6 is stochastically decreasing

in k and stochastically increasing in T . In particular,

E[O k - 0,T] > E[O I k - 0 , T - 0)

the lower bound is, of course, the mean of the prior density. Thus,

observing total time on test without observing failures tends to change

our belief about 8 as compared with our prior belief; we tend to be-

lieve in a larger e . However, for the natural conjugate prior, the

variance of e given k and T , decreases with k but increases

with T . Also the coefficient of variation is constant in T but

decreases with k . (See Table 3.1.) Hence if k - 0 , large values

of T tend to make us optimistic regarding 8 . However, failures are

needed to sharpen the posterior density. Similarly, for 6 - e , we

TewinoZogy: Throughout the book we use the term "increasing" in place of
"nondecreasing" and "decreasing" in place of "nonincreasing."

i

7. ' ' , ., . .. -,,

~---- -b-'
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can show that for a general prior density on X under mild regularity

conditions,

[ > k,T]

increases in k for fixed T and decreases in T for fixed k , just

as we would expect.

3.1 Example

Suppose our prior density on e is the natural conjugate prior

with a - 4 and b - 12 . We put 10 units on test. The earliest fail-

ure occurs at X(1) - 1 , followed by a withdrawal at t - 2 , and

finally a second failure at X(2) - 3 . In Figure 3.1, we plot the

posterior mean, posterior standard deviation, and posterior coeffi-

cient of variation as a function of t , the test time elapsed. Table 3.1

may be used to generate the plots.

In Figure 3.2 we have plotted the posterior density for 0 at

selected times during the life test. The posterior density for t - 0

is of course the prior density. Notice the shape of the posterior density

at t - i (i.e., just before the first observed failure) and at t - 1

(i.e., just after the first failure).

4- _ . -. b

w 72.. .. *
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10 Posterior Mean

I)

9

a

7 I

6 1 Posterior Standard

I Deviation

5

b

b

(a- 1) a- 2

2

1Coefficient of Variation

0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.6 3.0 3.2

x(1) x (2) 3 time

FIGURE 3.1

POSTERIOR MEAN, POSTERIOR STANDARD DEVIATION, AND POSTERIOR COEFFICIENT

OF VARIATION AS A FUNCTION OF ELAPSED TEST TIME
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4. NOTES AND REFERENCES

Section 1:

Books which emphasize Bayesian concepts as well as their applica-

tions are DeGroot (1970) and Winkler (1972). In a series of papers,

D. Basu (1975), (1977), (1978), points out the inadequacy of other

approaches to statistical inference. Definition 1.4 of sufficiency is

attributed by D. Basu to Kolmogorov (1942). The connection between sam-

ple theory (Fisher) sufficiency and Kolmogorov sufficiency is discussed

in Shih-Chuan Cheng (1978). Fisher sufficiency implies Kolmogorov suffi-

ciency. The converse is false in general. Natural conjugate priors were

introduced by Raiffa and Schlaifer (1961). For a rigorous characteri-

zation of natural conjugate priors, see Diaconis and Ylvisaker (1979).

The reviews of Bayesian statistics by Lindley (1972) and (1978) present

excellent summaries of recent advances in the subject.

Section 2:

Epstein and Sobel (1953), (1954) were the first to investigate the

properties of the exponential model applied to life test plans. In a

series of papers they made an intensive and extensive study of the

statistical features of a variety of exponential procedures for life

testing. Their work greatly influenced reliability theory and practice

at the time and still strongly influences current statistical practice

in reliability. Government Handbook H-108 and its subsequent modifica-

tions represent the Government's "seal of approval" and its effort to

implement the theory by making readily available tables and graphs for

easy use of the exponential model.

ja
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Section 3:

Stochastic monotonicity properties of the posterior mean are

derived using the concepts and methods of total positivity. (A

comprehensive and authoritative treatment of total positivity may be

found in Karlin (1968).) Theorem A.1 in the appendix is similar to

Lemma 2, p. 74, of Lehmann (1959).

In the mathematical insurance literature formula (3.3) is called

the credibility formula. Jewell (1977) and (1978) has discussed

Bayesian life testing.

4t

- -,_'______ ___"__ __-__
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APPENDIX A

POSTERIOR DISTRIBUTIONS CORRESPONDING TO ARBITRARY
PRIORS AND LIKELIHOODS WITH THE MONOTONE RATIO PROPERTY

We will prove the results mentioned in Section 3.

A.1 Theorem

Let it (8) be a prior density on 0 such that {e I wo(e) > 01

is an interval in (-,-) . Let data D - (k,T) and likelihood

L(6 I k,T) be given such that for 8I < 82

L(e 1 I k,T)/L(e 2 1 k,T)

is increasing in k and decreasing in T . Let g(6) be increasing

in e . Then

(A.1) g(e)w(8 I k,T)de

is decreasing in k (T fixed) and increasing in T (k fixed).

The proof will be given shortly.

A.2 Corollary

If L(e I k,T) e-ke-T/ e , then

(A.2) P[e > e I k,T] .J w(6 I k,T]de
eo

is decreasing in k (T fixed) and increasing in T (k fixed). [See

Section 3 and (3.4).]
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Proof:

In Theorem A.1, let g(O) - 1 for e > e and 0 otherwise. 11

0

A.3 Corollary

k -XT
Let L(A I k,t) a Xke and g() be increasing in A . Then

(A.3) fS(A)lr(A I k,T)dX

0

is increasing in k (T fixed) and decreasing in T (k fixed).

Clearly (A.1) (A.3] implies that all moments of the posterior

distribution are decreasing [increasing] in k and increasing [decreasing]

in T

Proof of Theorem A.l:

For 81 < 02 ,

L(61 I k,T)/L(e 2 1 k,T)

increasing in k implies that for k1 < k2

L(e I kl,T)/L(e I k2 ,T)

is increasing in 8 . It is easy to see that this in turn implies that:

(A.4) ,(e I kl.T)w( I k2 .T)

is also increasing in 8 . Let

A- e I w(e I k1,T) > w(8 k2 ,T)}

and

I_
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B - (8 I w(O I k1,T) < r(e I k2,) T))

Let a - inf S(8) and b - sup g(8) . Then the ratio in (A.4) is
eCA ecB

increasing in 8 implies that a > b *

Now

19(e) [w(I kl,T) - ir(e I kT)]de

>af' 7(e I kl,T) - w( I T)ld8

+ b If( f k1 ,T) - w(e I k2,T]de

-(a- b) f[7r(8 kT) -i(e k2,T)]dO > 0

Hence, the integral in (A.1) is decreasing in k

A similar argument proves that the integral in (A.1) is increasing

in T.jI

7?


